Links and References

The main fields of research within the framework of evolutionary computation, related to the GENETICA approach, are the fields of genetic algorithms (GA) and genetic programming (GP). Some ideas and techniques within the GENETICA approach originated from either GA or GP methods dealing with formal logic.

The G-CAD approach to architectural designing, presented in this site, combines features of Artificial Intelligence (AI) and evolutionary approaches to architectural designing. Some ideas and techniques within the G-CAD approach originated from the design method CADRAM.

The evolutionary approach to design, as well as other approaches based on biological paradigms, could be combined in the framework of integrated building.

Both web-sites and references to the aforementioned fields of research are given here.

 

Genetic Algorithms

Web-sites

Introduction:                    http://www.boente.eti.br/fuzzy/ebook-fuzzy-mitchell.pdf

Sources of information:    http://geneticalgorithms.ai-depot.com/

                                          http://www.talkorigins.org/faqs/genalg/genalg.html

Textbooks

[1]   J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. Ann Arbor, MI: University of Michigan Press, 1975.

[2]   D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addison-Wesley, 1989.

[3]   M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press, 1996.

 

Genetic Prorgamming

Web-sites

Introduction:                    http://www.genetic-programming.com/gpanimatedtutorial.html

Main web-sites:                http://www.genetic-programming.org/

                                          http://www.genetic-programming.com/

Textbooks

[1]   J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[2]   J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs. Cambridge, MA: MIT Press, 1994.

[3]   J.R. Koza, F.H. Bennett, D. Andre, and M.A. Keane, Genetic Programming III Darwinian Invention and Problem Solving. San Francisco, California: Morgan Kaufmann Publishers, 1999.

[4]   W.B. Langdon, Genetic Programming and data structures: Genetic Programming + data structures = automatic programming. Boston, Dordrecht, London: Kluwer Academic Publishers, 1998. Author's website: www.cs.ucl.ac.uk/staff/W.Langdon

[5]   W. B. Langdon and R. Poli, Foundations of Genetic Programming. Springer, 2002 (ISBN 3-540-42451-2)

[6]   W. Banzhaf, P. Nordin, R.E. Keller, and F.D. Francone, Genetic Programming—An Introduction. San Francisco: Morgan Kaufmann, Heildelberg Germany: dpunkt.verlag, 1998.

 

Evolutionary Methods Related to Formal Logic

References

[1]   C. Chakraborti and K.K.N. Sastry, “The Genetic Algorithms approach for proving logical arguments in natural language,” in Proceedings of the Third Annual Genetic Programming Conference, J.R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D.B. Fogel, M.H. Garzon, D.E. Goldberg, H. Iba, R.L. Riolo, Eds. San Francisco, California: Morgan Kaufmann Publishers, 1998, pp. 463-470.

[2]   F. Divina, and E. Marchiori, “Knowledge based evolutionary programming for inductive learning in first-order logic,” in GECCO-2001 Proceedings of the Genetic and Evolutionary Computation Conference, L. Spector, E.D. Goodman, A. Wu, W.B. Langdon, H-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M.H. Garzon, E. Burke Eds. San Francisco, California: Morgan Kaufmann Publishers, 2001, p. 173.

[3]   Matthias Fuchs, “Evolving term features: first steps,” Automated reasoning project, Research School of Information Sciences and Engineering, Australian National University. Tech. Rep. TR‑ARP‑04‑99, 1999.

Available: http://arp.anu.edu.au:80/ftp/techreports/1999/TR-ARP-04-99.ps.gz

[4]   Marc Fuchs, Dirk Fuchs, Matthias Fuchs, “Generating lemmas for Tableau-based proof search using Genetic Programming,” in GECCO-99 Proceedings of the Genetic and Evolutionary Computation Conference, W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, R.E. Smith, Eds. San Francisco, California: Morgan Kaufmann Publishers, 1999, pp. 1027-1032.

[5]   M. Keizer, V. Babovic, C. Ryan, M. O’Neill, and M. Catolico, “Adaptive Logic Programming,” in L. Spector at al. [2], pp. 42‑49.

[6]   I. Muslea, “A general-purpose AI Planning system based on the Genetic Programming paradigm,” in Late Breaking Papers at the Genetic Programming 1997 Conference, J.R. Koza, Ed. CA, USA: Stanford University, 1997, pp. 157-164.

[7]   K. Musumbu, K. Barbar, and M. Nassif, “Evolution Strategies to improve abstract interpretation algorithms for Logic Programming,” in J.R. Koza, Ed. [6], pp. 165-173.

[8]   P.G.K. Reiser, and P.J. Riddle, “Evolving logic programs to classify chess-endgame positions,” in Simulated Evolution and Learning: selected papers / Second Asia Pacific Conference on Simulated Evolution and Learning SEAL ‘98, B. McKay, X. Yao, C.S. Newton, J-H. Kim, T. Furuhashi Eds. Berlin, Heidelberg, New York, Barcelona, Hong Kong, London, Milan, Paris, Singapore, Tokyo: Springer-Verlag, 1999, pp. 138‑145.

[9]   B.J. Ross, “Logic-based Genetic Programming with Definite Clause Translation Grammars,” in W. Banzhaf at al. [4],  p. 1236

[10] A. Tamaddoni-Nezhad, and S. Muggleton, “Using genetic algorithms for learning clauses in first-order logic,” in L. Spector at al. [2], pp. 639-646.

 

Architectural Design Problem Solving Theories and Methods

Artificial Intelligence

[1]   R.D. Coyne and J.S. Gero, “Logic programming as a means of representing semantics in design languages,” Environment and Planning B: Planning and Design, vol. 12, pp. 351-369, 1985.

[2]   R.D. Coyne and J.S. Gero, “Design knowledge and context,” Environment and Planning B: Planning and Design, vol. 12, pp. 419-442, 1985.

[3]   C.M. Eastman, “Logical Methods of building design : a synthesis and review,” DMG-DRS Journal: Design research and methods, vol. 6 (3), pp. 79-87, 1972.

[4]   C. Kyriazopoulos, “The CADRAM program: an application for CAAD based on the primitives’ Allocation Method,” Diploma Thesis, Department of Architectural Engineering, National Technical University of Athens, 1995 (available from the Library of Department of  Architectural Engineering and from the author).

[5]   W.J. Mitchell, “The theoretical foundation of computer-aided architectural design,” Environment and Planning B: Planning and Design, vol. 2, pp. 127-150, 1975.

[6]   P.S.G. Swinson, “PROLOG: a prelude to a new generation of CAAD,” Environment and Planning B: Planning and Design, vol. 15, pp. 335-343, 1983.

Evolutionary

[1]   A.G. De Silva Garza and M.L. Maher, “A process model for evolutionary design case adaptation,” in Artificial Intelligence in Design 00, J.S. Gero, Ed. Dordrecht: Kluwer Academic Publishers, 2000, pp. 393-412.

 [2]  J.S. Gero, and V. Kazakov, “Adapting evolutionary computing for exploration in creative designing,” in Computational Models of Creative Designing, J.S. Gero, M.L. Maher Eds. Sydney, Australia: Key Centre of Design Computing and Cognition, University of Sydney, 1999, pp. 175‑186.

 [3]  J.S. Gero, “Novel models in evolutionary designing,” in Simulated Evolution and Learning: selected papers / Second Asia Pacific Conference on Simulated Evolution and Learning SEAL ‘98, B. McKay, X. Yao, C.S. Newton, J-H. Kim, T. Furuhashi Eds. Berlin, Heidelberg, New York, Barcelona, Hong Kong, London, Milan, Paris, Singapore, Tokyo: Springer-Verlag, 1999, pp. 381-388.

[4]   J.S. Gero, and X-G. Shi, “Design development based on an analogy with developmental biology,” in CAADRIA’99, J. Gu, and Z. Wei, Eds. Shanghai, China: Shanghai Scientific and Technological Literature Publishing House, 1999, pp. 253-264.

 [5]  R. Jagielski, and J.S. Gero, “A genetic programming approach to the space layout planning problem,” in CAAD Futures 1997, R. Junge Ed. Kluwer, Dordrecht, 1997, pp. 875‑884.

 [6]  H. Lipson, and N.P. Suh, “Towards a universal design-component architecture for design automation,” in Proceedings of ICAD2000 First International Conference on Axiomatic Design. Cambridge, MA – June 21-23, 2000.

 [7]  M.A. Rosenman, and J.S. Gero, “Evolving designs by generating useful complex gene structures,” in Evolutionary Design by Computers, P. Bentley, Ed. London: Morgan Kaufmann, 1999, pp. 345-364.

 [8]  L. Virirakis, “The continuous search space design method (CSSDM),” Environment and Planning B: Planning and Design, vol. 20, pp. 617-643, 1993.



   HOME