
Developing Languages in GENETICA

Lefteris Virirakis - 1 - info@genetica-informatics.org

DEVELOPMENT OF DOMAIN SPECIFIC LANGUAGES AND IMPLEMENTATION OF GENETIC

PROGRAMMING IN GENETICA

Introduction

A general and effective approach to domain specific problem solving is to describe a problem, as well as the

available knowledge on the problem solving context, in a high level language specialized on the problem’s

domain. High level formal languages can be expressed in lower level ones if the latter languages satisfy a

minimum of expressive capabilities. A typical example is given by the fact that any computer language can be

expressed in the machine language. GENETICA, which has the expressive capabilities required, supports the

development of high level formal languages. The benefit is that GENETICA’s evolutionary computational system

becomes available in the latter languages. Genetic Programming (GP) versions of high level languages become

possible if programs in the latter languages are treated as evolving data structures in GENETICA.

Section 1 presents a general method for developing in GENETICA high level domain specific languages,

including GP ones. Section 2 shows how the language G-CAD (presented in the file

G-CAD_Documentation.PDF) has been developed in GENETICA.

Developing Languages in GENETICA

Lefteris Virirakis - 2 - info@genetica-informatics.org

1. A general method for developing domain specific and GP languages in GENETICA

1.1 Specifications for the language to be developed and introduction to the development method

This section presents a general method for developing in GENETICA a language, name it L, having the

following properties:

 L includes all the GENETICA’s terms, while L-specific terms can be constructed in GENETICA as nested

lists.

 L atomic formulae can be constructed in GENETICA, while non atomic formulae definitions in L can be

constructed through the L syntax.

 L includes high order formulae respecting the definitions of the GENETICA formulae call and at (see

GENETICA_Documentation.PDF, § 2.2.2).

 A formula definition in L is a list having the form (FN, con, Sinp, Reflst, Sout, (Tinp, Tout)) where:

- FN is the name of the formula

- con is a connective

- Sinp is the input section as a list of names of input terms

- Reflst is the reference section as a list of formula references. A formula reference is a list having the

form (RefN, RefSin, RefSout) where RefN is the name of the referenced formula, while RefSin is the input

section and RefSout is the output section of the reference as lists of the names of the input and the output

terms respectively.

- Sout is the output section as a list of names of output terms

- (Tinp, Tout) is the type section where Tinp and Tout are vectors of abstract data structures indicating the

type of each term represented in the input and the output section of the definition respectively. Such

data structures have been used in GP methods, e.g. [1] (“generic data types”) or [2] (“patterns”).

Any symbol in the input section of a formula reference should be included either in Sinp or in the output

section of a previous formula reference in Reflst, while any symbol in Sout should be included in the output

section of a formula reference in Reflst.

 The connectives in L include at least the GENETICA’s connectives, i.e. the logical operations, the

quantifiers, the conditional recursion and the optimization connective, while any other connective can be

constructed as a GENETICA hi order formula. A quantifier in L is implemented as a non atomic L formula

whose definition includes a single reference.

 Given the output values of each formula referenced by a non atomic formula F, the output values of F are

deterministically defined.

 A program in L is a list of formulae definitions.

Developing Languages in GENETICA

Lefteris Virirakis - 3 - info@genetica-informatics.org

Having these properties, L is expressive enough for general problem formulation, while it can be specialized in

arbitrarily narrow domains, depending on the specific definition of the terms, the atomic formulae and the

connectives in L.

Let the prefixes “G” and “L” denote an element of GENETICA and an element of L respectively.

L can be implemented as a G-program, name it PG, where the input vector for the root G-formula in PG (the

term “root formula” is defined in the file GENETICA_Documentation.PDF, § 2.3, p.8) includes an arbitrary

L-program, name it PL, and an input vector value for the root L-formula in PL, while the output vector value for

the latter formula, resulting from the execution of PL, is included in the output of the root G-formula. The

execution of PL reflects the execution of PG: any data generation scenario in PL is an interpretation of a

corresponding data generation scenario in PG, while any confirmation or optimization goal in PL is an

interpretation of a corresponding goal in PG. Due to these interpretations, the evolution of data generation

scenarios in PG, supported by GENETICA’s computational system, is reflected in PL.

PL can be modified or even developed during the execution of PG, since it is treated as a data structure in PG.

Specifically, missing L-formulae (i.e. L-formulae referenced but not defined in PL) can be constructed at run-time,

while redundant L-formulae (i.e. L-formulae defined but not referenced in PL) can be referenced by L-formulae

emerging at run-time. Data processing in PG, resulting to the development of PL, is controlled by the

computational system of GENETICA’s environment. This makes possible a general GP method, where domain

specific applications could be developed, since problem specific knowledge can be encoded in incomplete

L-programs (i.e. L-programs with missing or redundant L-formulae) while such programs, including the program

architecture, can be fully developed by evolution. Depending on the degree of the completeness of the L-program,

L could range from a GENETICA-like (non-GP) language, where the code is fixed whereas the data structures

evolve, to a fully GP language where both the entire code and the data structures evolve. Note that, unlike standard

GP, GENETICA can cope with confirmation goals. Within GENETICA-based GP such goals can be reflected not

only in the problem formulation but also in the formulation of the GP method itself. For instance, type

compatibility, which is typically a part of a GP method, can be implicitly converted to a part of the problem to be

solved; as a consequence it can be evolved as part of the solution.

1.2 The outline of a GENETICA program that implements domain specific and GP languages

A semi-formal description of the G-program PG, introduced in the previous paragraph, is presented in Table 1.

The notation used does not respect GENETICA’s syntax, for the sake of simplicity. Note that the if-then-else and

the do-until structures appearing in the description, although not included in GENETICA’s syntax, can be

constructed in GENETICA as high order formulae. The basic formulae of the program PG are presented in the

next paragraphs, with respect to Table 1.

Developing Languages in GENETICA

Lefteris Virirakis - 4 - info@genetica-informatics.org

1 Execute (PL, FN, Vinp)

2 if (Atomic (FN)) then {

3 if (First_Order (FN)) then {

4 Call (FN, Vinp)  Vout

5 } else {
6 Prepare_Forced_Call (Vinp)  (FF, VinpF)

7 Execute (PL, FF, VinpF)  (PL, FF, Vout)

8 }
9 } else {
10 if (FN = ()) then {
11 Initialize_Definition (Vinp)  (FN, con, Sinp, Reflst)

12 Add (PL, (FN, con, Sinp, Reflst, (), ()))  PL

13 }
14 Execute_References (PL, FN, Vinp)  (PL, Voutlst)

15 Define_Output (PL, FN, Voutlst)  (PL, Vout)

16 Define_IO_Type (PL, FN)  PL

17 }
18 Return (PL, FN, Vout)

19 Execute_References (PL, FN, Vinp)

20 Initialize_Table (PL, FN, Vinp)  T

21 Voutlst  ()

22 i  0
23 do {
24 i +1  i
25 Get_Reference (PL, FN, i)  (R, n)

26 Prepare_Execute_Call (PL, FN, R, T, i)  (FNR, SinpR, VinpR)

27 Execute (PL, FNR, VinpR)  (PL, FNR, VoutR)

28 Add (Voutlst, VoutR)  Voutlst

29 if (R = ()) then {
30 Create_Reference_Output_Section (VoutR)  SoutR

31 Revise_Reference_ Section (PL, FN, n, FNR, SinpR, SoutR)  PL

32 }
33 Revise_Table (PL, FN, T, n, VoutR)  T

34 } until (Termination_condition (PL, FN, T, i))

35 Return (PL, Voutlst)

36 Definitions of atomic L-formulae follow …

TABLE 1

Outline of the GENETICA program PG which implements a domain specific—potentially GP—language L. The

symbol “” denotes assignment of the values calculated from the left-hand expression to the right-hand variables.

The symbol “” denotes assignment of the right-hand value to the left-hand variable.

Developing Languages in GENETICA

Lefteris Virirakis - 5 - info@genetica-informatics.org

a) The G-formula “Execute”

The input for the root G-formula Execute (line 1) includes a L-program PL, a variable FN which represents a

L-formula, name it F, and an input vector value Vinp for F. F can be a) an atomic L-formula, b) a L-formula

defined in PL, or c) a L-formula to be evolved. In the cases (a) and (b) the value of FN is F’s name viewed as a

symbol, Vinp is a valid input vector value for F, while Execute calls F with Vinp. In the case (c) the initial value of

FN is an empty list, Vinp is an arbitrary L-list, while Execute creates a F definition compatible with Vinp, registers

the F definition in PL and calls F with Vinp. Execute returns PL (enlarged by F’s definition in the case (c)), FN

(changed to the name of F in the case (c)), and the output vector value Vout of the F call.

If F is defined in PG as a first order atomic L-formula (which can be identified by the value of FN) (lines 2 and

3) then the high order G-formula Call (line 4) calls F with input vector value Vinp while returns the output vector

value Vout of the F call.

If F is defined in PG as a high order atomic L-formula (line 5) then:

a) the G-formula Prepare_Forced_Call (line 6) returns both the L-formula name FF and the input

vector value VinpF for the forced call. Here is the definition procedure for FF and VinpF:

a1) if the first element of Vinp, name it e, is either the name of an atomic L-formula or the name of

a L-formula defined in PL then define FF = e, otherwise define FF = ().

a2) define VinpF to be the remaining part of Vinp after removing the first element.

b) the G-formula Execute is called with input terms PL, FF and VinpF (line 7).

If F is either defined in PL as a non atomic L-formula or undefined (both cases are represented in line 9) then the

following steps are realized.

If FN = (), in which case F is undefined (line 10), then the G-formula Initialize_Definition (line 11) defines FN

to be a new symbol (not used before in the L-code), con to be a random L-connective consistent with Vinp, Sinp to

be a list of different random symbols where the size of Sinp equals the size of Vinp, and Reflst to be a list of empty

lists where the size of Reflst equals a number of references consistent with con. Then the G-formula Add (line 12)

redefines PL by appending at the end of PL the list (FN, con, Sinp, Reflst, (), ()), which represents the current state

of the F definition, as an element.

For the sake of simplicity, within the remainder of this presentation, an element of the F definition (e.g. the

formula’s name, the input section, the reference section etc.), where the latter definition is registered in PL, will be

referred to as an element of F. Consider that any element of F can be accessed by any G-formula having PL and

FN as input terms.

The G-formula Execute_References (line 14) performs recursive Execute calls. Each recursive call realizes a

L-formula call directly caused by the F call (the term “directly caused call” is defined in the file

GENETICA_Documentation.PDF, § 2.3, p.8). Each one of these L-formula calls, except the recursive F call

performed in the case of L-recursion, depends on an element of the reference section of F. If the latter element is

Developing Languages in GENETICA

Lefteris Virirakis - 6 - info@genetica-informatics.org

not an empty list then the reference section of F remains intact in PL; otherwise the element is substituted by a

valid reference constructed during the respective Execute call. The latter reference may refer to an undefined

L-formula (i.e. a L-formula whose definition is not included in PL). In this case the referenced L-formula’s

definition will be constructed and appended to PL. Execute_References returns both the revised PL and Voutlst

which is the list of the output vector values of the directly caused L-formula calls.

The G-formula Define_Output (line 15) revises the output section of the F definition in PL and creates Vout

which is the output vector value of the F call. If the current output section is not an empty list then it remains

intact. Otherwise it is redefined as a list of symbols randomly selected either from the input section or from the

reference output sections of F. The random selection procedure respects L-syntax constraints relating the

connective, the input section, the reference section and the output section of a L-formula (for instance if the

L-connective does not denote recursion then no symbol from the input section could be selected for the output

section). Due to the construction method of Voutlst there is a map, name it M, from the set of symbols included in

either the input section or the reference output sections of F to a set of structures of values included in the elements

of Voutlst. Specifically M maps each symbol either to a single value (which is assigned to the symbol by a directly

caused call) or to a list of values, each value included in a different element of Voutlst, (where each value is

assigned to the symbol by a different directly caused call in the case of a L-quantifier) depending on the

L-connective of F. The list Vout is derived from M, given the L-connective and the output section of F.

The G-formula Define_IO_Type (line 16) revises the type section of the F definition in PL. If the current type

section is not an empty list then it remains intact. Otherwise it is substituted by a type section whose construction

is based on the type sections of the L-formulae referenced in the F definition.

b) The G-formula “Execute_References”

As mentioned in the previous paragraph, the G-formula Execute_References calls (potentially also creates) the

L-formulae referenced in the F definition.

The G-formula Initialize_Table (line 20) creates a table T where the one-to-one mapping between the symbols

in the input section of F and the homologous values in Vinp is registered.

The empty list and the value 0 are assigned to the variables Voutlst and i respectively (lines 21 and 22).

The do-until loop (lines 23 to 34) is executed once for each L-formula call directly caused by the F call. The

confirmation of the termination condition (line 34) depends on the content of the F definition, on the value

assignment registered in T and on the order i of the directly caused L-formula call. For instance, if F is constructed

with a L-and then the termination condition is i = k, where k is the size of the reference section of F, whereas if F

is constructed with a L-quantifier then the termination condition is i = h, where h is the size of the list—registered

in T—referred to by the L-quantifier.

The G-formula Get_Reference (line 25) returns both R, which is an element of the reference section of F, and n,

which is the order of R in the reference section. R defines the directly caused L-formula call. n (which specifies

Developing Languages in GENETICA

Lefteris Virirakis - 7 - info@genetica-informatics.org

R) depends both on the L-connective of F and on the order i of the directly caused L-formula call: for instance

n = i in the case of a L-and where each directly caused call is defined by a different element of the reference

section of F, whereas n = 1 in the case of a L-quantifier where there is only one element, which defines all the

directly caused calls, in the reference section of F. If the directly caused L-formula call is the recursive F call in

the case of L-recursion (in which case the directly caused call is not represented in the reference section of F) then

R is defined to be a two element list having fist element FN and second element the input section of F, while n is

ignored.

The G-formula Prepare_Execute_Call (line 26) returns FNR, SinpR and VinpR where FNR and SinpR are

respectively the referenced L-formula name and the input section of the reference represented by R, while VinpR is

the input vector value for the directly caused call. Here is the definition procedure for the output values of

Prepare_Execute_Call:

a) if R  () then define FNR and SinpR equal to the first and the second element of R respectively.

b) if R = () then define FNR and VinpR by randomly choosing one of the following definitions:

b1) Define FNR = (). Define SinpR to be a list of random symbols registered in T, where the random

selection procedure respects L-syntax constraints relating con, Sinp, and the first n elements of

the reference section of F.

b2) Define FNR to be the name of either a random atomic L-formula or a random L-formula in PL.

Define SinpR to be a list of random symbols registered in T, where the random selection

procedure respects both:

- the requirement that the list of values where the list of symbols is mapped by T is

type-compatible to the input of the L-formula.

- L-syntax constraints relating con, Sinp, and the first n elements of the reference section of F.

c) Let V be the vector value where Sinp is mapped by T. If con is a L-quantifier referring to a

list-element, name it qLST, of V and ei is the ith element of qLST then define VinpR to be the list derived

from V when qLST is substituted by ei. If con is not a L-quantifier then define VinpR = V.

The directly caused L-formula call is realized through a call to Execute (line 27). This call returns PL as the

(potentially revised) L-code, FNR as the (potentially revised) name of the L-formula called and VoutR as the output

vector value of the directly caused call.

The G-formula Add redefines Voutlst (line 28) by appending VoutR as an element at the end of Voutlst.

If R = () (line 29), which means that the nth reference of F is undefined, then the G-formula

Create_Reference_Output_Section (line 30) returns SoutR as a list of new symbols (not used before in the

L-code), where the size of SoutR equals the size of VoutR, while the G-formula Revise_Reference_Section

Developing Languages in GENETICA

Lefteris Virirakis - 8 - info@genetica-informatics.org

(line 31) redefines PL by substituting the nth reference, within the reference section of F, with the list

(FNR, SinpR, SoutR).

The G-formula Revise_Table (line 33) registers in T the one-to-one mappings between the symbols in the

output section of the nth reference of F and the homologous values in VoutR, if the L-connective of F indicates that

the output terms of a reference can be used as input terms in succeeding references.

1.3 Fitness evaluation considerations

The fitness of a PG execution should depend only on the fitness of the resultant PL execution (determined in the

lines 4, 7, 14, 27 of Table 1) and on the G-formulae involved in the L-code generation (lines 11, 15, 26 of Table

1). Any other G-formula call appearing in Table 1 should be made “always true” (see:

GENETICA_Documentation.PDF, § 3.2.1.d, p.14).

The do-until loop (lines 23 to 34 of Table 1) has an important role in the construction of the fitness of the PL

execution: the loop’s fitness should depend on the L-connective of F (see § 1.2.b). This loop could be

implemented as a high order G-formula, name it Loop, which calls a loop-executing G-formula depending on the

L-connective of F. For instance, name Loopcon the loop-executing G-formula that corresponds to the L-connective

con. If con is either the L-and or the universal L-quantifier then Loopcon is constructed with the universal

G-quantifier app (see G-CAD_Documentation.PDF: § 2.3), whereas if con is either the L-or or the existential

L-quantifier then Loopcon is constructed with the existential G-quantifier chs.

Considering the optimization problems, note that a L-opt connective cannot be constructed by GENETICA’s

opt, since the latter only constructs the root G-formula. However it can be simulated by a non atomic G-formula

whose fitness depends on the comparison of 0 with the inversed magnitude under maximization. Alternatively, a

variation of PG could include an opt root formula, as shown in section 2.

1.4 Implementation issues concerning domain specific and GP languages developed in GENETICA

As shown in the previous paragraphs, the execution of the program PL is an interpretation of the execution of the

program PG. If all the L-formulae referenced in PL are also defined in PL then PL remains intact during the PG

execution, since the G-formulae altering the L-code are never activated, while the whole data generation process in

PL is defined by the genetic list (GL) (see: GENETICA_Documentation.PDF, § 3.1) of the PG execution. In this

case L could be considered as a GENETICA-like (non-GP) language where the code is fixed, whereas the data

structures evolve reflecting the GL evolution which is controlled by the computational system of GENETICA’s

environment. If PL includes undefined L-formulae references, represented as empty lists in the reference section of

L-formulae definitions, then both the code generation process and the data generation process in PL are defined by

the GL of the PG execution. In this case L could be considered as a GP language where both the code and the data

structures evolve; the “function set” is the set of the atomic L-formulae and the L-formulae fully defined in PL,

Developing Languages in GENETICA

Lefteris Virirakis - 9 - info@genetica-informatics.org

while the “terminal set” is extracted from the input vector value for PL (named Vinp in Table 1). Infinite

development of a L-program can be prevented by any suitable control mechanism, for instance the controls used in

recursion-enabled GP e.g. [3] (pp.31-32).

A GP method could be implemented by means of a L-formula that includes an undefined reference to the

L-formula that constructs a solution and a reference to a fully defined solution evaluation L-formula. Hybrid GP

and GENETICA-like methods could be implemented in a L-program that includes partially defined L-formulae,

i.e. L-formulae including both defined and undefined references. Incomplete problem specific knowledge can be

represented by partially defined L-formulae which are to be fully defined by GP-like evolution.

2 The development of the language G-CAD in GENETICA

2.1 Introduction to a GENETICA program that implements G-CAD

The architectural design language G-CAD is described in the file G-CAD_Documentation.PDF. It is assumed

that the reader is familiar with the terminology introduced in this file.

G-CAD is a non-GP GENETICA-like language where the code is fixed while data structures evolve. The

structure of G-CAD resembles the structure of the language L introduced in § 1.1. However G-CAD differs from

L in the following points:

 A formula definition in G-CAD, i.e. the definition of a Unit creation formula (G-CAD_Documentation.PDF,

§ 1.8, 2.3), has no type section: the type compatibility is a responsibility of the programmer, since G-CAD is

not a GP language.

 A formula definition in G-CAD has a property section where values used during the G-CAD program

execution are registered.

 Terms not included in the G-CAD code, i.e. the “implicit terms” (see G-CAD_Documentation.PDF, § 2.1),

affect the execution of a G-CAD program.

 G-CAD does not include an optimization connective.

 The G-CAD connectives G_OR and G_ONE (i.e. the logical OR and the existential quantifier) cause calls that

depend on random selections: when a G_OR formula is called, a referenced formula randomly selected from

the reference section of the G_OR formula is called, while when a G_ONE formula is called, a randomly

selected element of a list is included in the input values of the referenced formula’s call.

G-CAD has been implemented as a GENETICA program named PGG-CAD which is based on the program PG

presented in § 1.2. PGG-CAD has input a G-CAD program, name it PL, and the input values for PL, while it has

output the output of PL. The input of PL includes (see: G-CAD_Documentation.PDF, § 3.1):

a) a World Unit consisted of standard (non evolvable) sub-Units

b) descriptions of Units to be evolved.

Developing Languages in GENETICA

Lefteris Virirakis - 10 - info@genetica-informatics.org

A description of a Unit to be evolved includes:

- a Spatial Map M, which represents the environment where the Unit is to be developed

- the name FN of the Unit’s definition formula which is included in PL

- the input vector value for the Unit’s definition formula.

Standard Units and Units to be evolved represent static and dynamic elements of a solution respectively. The

solution itself is represented as a Unit to be evolved.

During the PL execution, which reflects the PGG-CAD execution, the Units to be evolved are successively

developed and imprinted, each one to the respective Spatial Map, via a call to the respective Unit definition

formula. Developed Units are successively appended to the World Unit. Each developing Unit may refer (through

instancing) to any sub-Unit of the so far developed World Unit. This makes possible self-replication procedures

within the World Unit’s structure, which allow fractal-like growth of the World Unit.

The Unit developed last, which corresponds to the last Unit description in the input of PL, is considered as the

solution of the design problem. The output of PL, which is also the output of PGG-CAD, includes the developed

World Unit, the Spatial Map where the solution Unit has been imprinted and the explicit (in G-CAD syntax)

output of the solution Unit definition formula.

The basic structure of PGG-CAD, presented in the next paragraph, is based on the structure of PG presented in

§ 1.2. The features of PGG-CAD not encountered in PG are summarized here:

 An optimization formula has been introduced in PGG-CAD, since G-CAD does not include an

optimization connective.

 G-CAD formulae definitions, appearing as terms in PGG-CAD, include a property section.

 Code generation and term type calculation procedures are obsolete in PGG-CAD since G-CAD is not a

GP language.

 Implicit and explicit G-CAD terms are separately processed in PGG-CAD.

 The random selections performed by the connectives G_OR and G_ONE are programmed in

PGG-CAD.

2.2 Presentation of the GENETICA program that implements G-CAD

A semi-formal description of the program PGG-CAD, introduced in the previous paragraph, is presented in Table 2.

The description respects the notation of Table 1.

The root formula in PGG-CAD is the G-formula Optimize (line 1) which is constructed with the G-connective opt.

The solution construction formula is the G-formula Create_Units (line 2), while the solution evaluation formula is

the G-formula Last (line 3).

Developing Languages in GENETICA

Lefteris Virirakis - 11 - info@genetica-informatics.org

1 Optimize (PL, uw, Elst)

2 Create_Units (PL, uw, Elst)  (uw, Vout)

3 Last (Vout)  Vto_be_maximized
4 Return (uw, Vout)

5 Create_Units (PL, uw, Elst)

6 For_Each_Element ((FN, Minp, Vinp), Elst) {

7 Execute (PL, FN, (Minp, uw, uw, Vinp))  (Mout, Vout)

8 }
9 Return (uw, Vout)

10 Execute (PL, FN, (Minp, uw, up, Vinp))

11 if (Atomic (FN)) then {

12 if (First_Order (FN)) then {

13 Call (FN, (Minp, uw, up, Vinp))  (Mout, Vout)

14 } else {
15 Prepare_Forced_Call (Vinp)  (FF, VinpF)

16 Execute (PL, FF, (Minp, uw, up, VinpF))  (Mout, Vout)

17 }
18 } else {
19 Create_Child_node (Vinp, uw, up)  uc
20 Execute_References (PL, FN, (Minp, uw, uc, Vinp))  (Mout, Voutlst)

21 Define_Output (PL, FN, Voutlst)  Vout

22 }
23 Return (Mout, Vout)

24 Execute_References (PL, FN, (M, uw, uc, Vinp))

25 Initialize_Table (PL, FN, Vinp)  T

26 Voutlst  ()

27 i  0
28 do {
29 Get_Call_Order (PL, FN, i)  i

30 Get_Reference (PL, FN, i)  (R, n)

31 Prepare_Execute_Call (PL, FN, R, T, i)  (FNR, VinpR)

32 Execute (PL, FNR, (M, uw, uc, VinpR))  (M, VoutR)

33 Add (Voutlst, VoutR)  Voutlst

34 Revise_Table (PL, FN, T, n, VoutR)  T

35 } until (Termination_condition (PL, FN, T, i))

36 Return (M, Voutlst)

37 Definitions of atomic G-CAD formulae follow …

TABLE 2

Outline of the GENETICA program PGG-CAD, which implements the language G-CAD, with respect to the notation

introduced in Table 1.

Developing Languages in GENETICA

Lefteris Virirakis - 12 - info@genetica-informatics.org

The input of Optimize includes:

1. A G-CAD program PL.

2. A pointer uw to a World Unit which initially includes only standard (non evolvable) Units.

3. A list Elst of descriptions of Units to be evolved. Each element of Elst is a list having the form

(FN, M, Vinp), where FN is the name of the PL formula defining the Unit, M is a Spatial Map where

the Unit is to be imprinted, and Vinp is an input vector value for the formula named FN.

Let (FNlast, Mlast, Vinplast) be the last element of Elst. Optimize returns the terms uw and Vout, where Vout is the

output vector value of the formula named FNlast. The term uw, which is the pointer to the World Unit, remains

intact during the Optimize call; however the World Unit itself changes, as evolving Units are successively

constructed and appended to it. The Unit constructed by the last element of Elst is considered as the solution of the

design problem. The last element of Vout is considered as the value to be maximized in the case of optimization.

The G-formula Last (line 3) just returns the last element of Vout.

Let F be the G-CAD formula having name FN, where the F definition is registered in PL.

Within the Create_Units definition (line 5), the loop For_Each_Element (lines 6 to 8), which is constructed

with the universal G-quantifier app, calls the G-formula Execute once for each element of Elst. The element

passed to each loop execution is represented by the list (FN, Minp, Vinp) appearing as an input term for the formula

For_Each_Element. The G-formula Execute calls F with input vector value (Minp, uw, uw, Vinp), while

(Mout, Vout) is the output vector value of the call (both the input and the output terms for a G-CAD formula have

been presented in G-CAD_Documentation.PDF: § 2.1). The pointer uw and the output vector value Vout emerging

at the last loop execution—where the last element of Elst has been passed—are returned by Create_Units.

The definitions of both the G-formulae, Execute (line 10) and Execute_References (line 24), presented in Table

2 differ from the definitions of the homonymous G-formulae presented in Table 1 in the following points:

1) The input vector value of a L-formula to be called, named Vinp in the definition of Execute in Table 1,

has been substituted by (Minp, uw, up, Vinp) which is the input vector value of a G-CAD formula as

described in G-CAD_Documentation.PDF: § 2.1. Respectively the output vector, named Vout in Table 1,

has been substituted by (Mout, Vout) which is the output vector value of a G-CAD formula.

2) Procedures executed if FN is either an empty list or the name of a G-CAD formula having undefined

references, have been removed. Both FN and PL do not appear as output terms of G-formulae since they

are never redefined.

3) A reference to the G-formula Create_Child_node has been added (line 19). This formula is called if F is

a non atomic formula, i.e. if it is a formula constructing a Unit. Create_Child_node initializes the new

Unit as a list that includes the standard value 2, denoting “Unit” (the representation of a Unit is defined in

G-CAD_Documentation.PDF: § 1.8), and the Unit’s property list which is an element of Vinp. Then

appends the initialized Unit as an element at the end of the list pointed by up and returns a pointer uc to

Developing Languages in GENETICA

Lefteris Virirakis - 13 - info@genetica-informatics.org

the initialized Unit. The initialized Unit represents a child node of the Unit pointed by up within the

World Unit’s tree structure.

4) The last input term in the definition of the G-formula Execute_References (line 20), i.e. the list

(Minp, uw, uc, Vinp), differs from the respective term in the definition of the G-formula Execute, i.e. the

list (Minp, uw, up, Vinp), in the third element: the Units pointed by up and uc have a parent-to-child

relation which makes possible the development of the World Unit’s tree, through the recursive

interactions between Execute and Execute_References.

5) The table T created by the G-formula Initialize_Table (line 25) represents a map which is defined by

both:

- the one-to-one mapping between the symbols in the input section of F and the homologous values in

Vinp (this is the definition of T presented in Table 1)

- the one-to-one mapping between property names and property values, defined in the property section

of F.

6) The G-formula Get_Call_Order (line 29) increases i by one (as in the line 24 of Table 1) in the case of

the G-CAD connectives G_AND, G_ALL and G_REC. In the case of a G_OR connective

Get_Call_Order returns an integer representing the order of a random reference in the reference section

of F. In the case of the G-CAD quantifier G_ONE, Get_Call_Order returns an integer representing the

order of a random element of the list referred to by the quantifier.

Evolving random selections performed during the execution of PL specify:

a) the position, orientation and mirroring condition of each terminal (Primitive or Instance: see

G-CAD_Documentation.PDF, § 1.7, 1.8) of an evolving object, given the terminal’s Positioning List

(G-CAD_Documentation.PDF, § 1.9) and the Spatial Map (G-CAD_Documentation.PDF, § 1.3) where

the terminal is to be imprinted (G-CAD_Documentation.PDF: § 2.2.a, 2.2.c)

b) the dimensions of each terminal Primitive of an evolving object, given the Primitive’s OCS and the

Spatial Map’s region where the Primitive is allowed to be placed (see G-CAD_Documentation.PDF:

§ 2.2.a)

c) the output of the multiple confirmation G-CAD secondary formulae (the term “multiple confirmation

formula” has been defined in GENETICA_Documentation.PDF: § 2.1 p.2)

d) the referenced G-CAD formula which is to be called in the case of a G_OR connective

e) the input of the referenced G-CAD formula in the case of a G_ONE connective

All the aforementioned random selections evolve due to GENETICA’s computational system since they are

performed via the multiple confirmation GENETICA formulae appearing in PGG-CAD: these are the formulae that

implement the G-CAD multiple confirmation atomic formulae in the cases (a), (b) and (c), and the formula

Get_Call_Order (Table 2, line 29) in the cases (d) and (e).

Developing Languages in GENETICA

Lefteris Virirakis - 14 - info@genetica-informatics.org

REFERENCES

[1] T. Yu and C. Clack, “PolyGP: A polymorphic Genetic Programming system in Haskell,” in

Proceedings of the Third Annual Genetic Programming Conference, J.R. Koza, W. Banzhaf,

K. Chellapilla, K. Deb, M. Dorigo, D.B. Fogel, M.H. Garzon, D.E. Goldberg, H. Iba, R.L. Riolo, Eds.

San Francisco, California: Morgan Kaufmann Publishers, 1998, pp. 416-421.

[2] Matthias Fuchs, “Evolving term features: first steps,” Automated reasoning project, Research School

of Information Sciences and Engineering, Australian National University. Tech. Rep. TR-ARP-04-99,

1999. Available: http://arp.anu.edu.au:80/ftp/techreports/1999/TR-ARP-04-99.ps.gz

[3] W.B. Langdon, Genetic Programming and data structures: Genetic Programming + data structures =

automatic programming. Boston, Dordrecht, London: Kluwer Academic Publishers, 1998.

